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The standard construction of upwind difference schemes for hyperbolic systems of
conservation laws requires the full eigensystem of the Jacobian matrix. This system is
used to define the transformation into and out of the characteristic scalar fields, where
upwind differencing is meaningful. When the Jacobian has a repeated eigenvalue,
the associated normalized eigenvectors are not uniquely determined, and an arbitrary
choice of eigenvectors must be made to span the characteristic subspace. In this re-
port we point out that it is possible to avoid this arbitrary choice entirely. Instead, a
complementary projection technique can be used to formulate upwind differencing
without specifying a basis. For systems with eigenvalues of high multiplicity, this
approach simplifies the analytical and programming effort and reduces the compu-
tational cost. Numerical experiments show no significant difference in computed
results between this formulation and the traditional one, and thus we recommend its
use for these types of problems. This complementary projection method has other
applications. For example, it can be used to extend upwind schemes to some weakly
hyperbolic systems. These lack complete eigensystems, so the traditional form of
characteristic upwinding is not possible.c© 1998 Academic Press

1. INTRODUCTION

The standard formulation of upwind difference schemes for hyperbolic systems re-
quires finding the Jacobian matrix of the flux function and the associated eigensystem
(eigenvalues and left and right eigenvectors). The left eigenvectors define the transfor-
mation into the characteristic fields, the associated eigenvalues define upwind directions
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for these fields, and the right eigenvectors define the transformation back to the primitive
variables.

These characteristic upwind schemes are generally considered to give the highest quality
numerical results. There is a vast literature on this subject (see, e.g., [4] and the references
therein). Their only drawback is that they require specifying a complete eigensystem for
the problem. In practice, this can involve considerable analytical work, as well as some
complications when the eigensystem lacks uniqueness (or even existence). In this paper
we point out that, in many cases, the most problematic portion of the eigensystem can be
avoided entirely.

As motivation, consider a system which has a repeated eigenvalue (characteristic speed).
A common example is the compressible, multispecies, multidimensional Euler equations
[3], where the convective flow velocity is an eigenvalue repeated once for each species and
each spatial dimension (see Section 4.3). In such a system, the distinct eigenvalues have
corresponding unique eigenvectors (up to scalar multiples), but the eigenvectors for the
repeated eigenvalue are not unique. The eigen-subspace is well defined, but an arbitrary
choice of spanning eigenvectors must be made to obtain a complete eigensystem. These
arbitrary vectors may form the great majority of the eigensystem.

When designing a numerical method for such a system, various criteria can be applied
to help select one eigenbasis from the infinitely many choices. For example, one can look
for eigenvectors that are as sparse as possible, in order to save time projecting into and out
of characteristic fields. One can also demand that the left and right eigenvector matrices be
numerically well conditioned (i.e., determinant near 1). Still, there is a high degree of arbi-
trariness left over, and for degenerate systems, there are typically a variety of eigensystems
presented in the literature.

Our goal here is to present an alternative approach which eliminates the need to find
the ambiguous eigenbasis. The basic idea is to project data directly into the characteristic
subspace by using the complement of the projection operator defined by the unambiguous
part of the eigensystem. Componentwise upwind differencing can be applied directly to
this characteristicvectorfield, in contrast to the usual approach of upwinding characteristic
scalar fields.

2. THE COMPLEMENTARY PROJECTION METHOD (CPM)

To describe the complementary projection technique in detail, we will show how it relates
to the standard characteristic decomposition used in upwind discretization of a system ofn
hyperbolic conservation laws in one spatial dimension,

Ut + [F(U)]x = 0. (1)

Let the Jacobian of the flux function,∂F(U)/∂U, have left and right eigenvectorsL i and
Ri , with associated eigenvaluesλi , i = 1, . . . ,n. The left and right eigenvectors are further
required to be mutually orthonormal, i.e.L i ·R j = δi j . Equivalently, the row matrix of left
eigenvectors,L, and column matrix of right eigenvectors,R, are inverses:LR = RL = I .

Given this complete eigensystem, any upwind difference scheme defined for scalar equa-
tions can be extended to the hyperbolic system via a “characteristic decomposition.” This
can be described fairly generally as follows: the spatial discretization of [F(U)]x is expressed
as a difference of fluxes between two grid cell walls. Thus the essential step is to compute
the flux at a grid cell wall,Fw, given the fluxes,F(U), at the nearby grid cell centers [4].
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The first step in defining the flux at a particular cell wall is to project the vector fluxes at
each cell center into “scalar fluxes for thei th characteristic field,” defined byf i = L i

w ·F(U).
HereL i

w,R
i
w, andλi

w are used to denote left and right eigenvectors and eigenvalues evaluated
at the wall in some fashion. Note the assumed orthonormality implies we can write the
original vector flux in terms of these scalar fluxes as

F(U) = f 1R1
w + f 2R2

w + · · · + f nRn
w. (2)

This shows that we can think off i Ri
w as the vector contribution to the total flux from the

i th characteristic scalar flux,f i .
Next, for each scalar fieldi , the cell center characteristic fluxes,f i , are interpolated to

the cell wall of interest in an upwind fashion with the upwind direction defined by the
corresponding “characteristic speed” at the wall,λi

w. This yields the scalar characteristic
wall flux, f i

w.
Finally, the desired total wall flux vector is defined as the sum of all the characteristic

vector contributions,

Fw = f 1
wR1

w + f 2
wR2

w + · · · + f n
wRn

w. (3)

To introduce the alternative approach, suppose that from then eigenvalues we have
a p-fold repeated eigenvalue. Without loss of generality, we will assume that the first
p eigenvalues,λ1

w = λ2
w = · · · = λp

w, are repeated. The correspondingp dimensional
characteristic subspace is the span of{L1

w, . . . ,L
p
w}. The part of the original cell center flux

vectorF(U) that lies in this characteristic subspace is

F = f 1R1
w + f 2R2

w + · · · + f pRp
w. (4)

Note that all of the characteristic fields contributing toF have the same upwind direction
for interpolation, since their characteristic speeds (eigenvalues) are identical.

SinceF has a well-defined upwind direction, upwind differencing is possible without
decomposingF further into the individual scalar fluxes. Instead, we can directly apply
upwind interpolation to the cell center values of the vectorF , in a component by component
fashion. LetFw denote the resulting flux value interpolated to the cell wall of interest. Then,
the net cell wall flux required in the numerical method can be defined via the “partially
decomposed” form

Fw = Fw + f p+1
w Rp+1

w + f p+2
w Rp+2

w + · · · + f n
wRn

w, (5)

instead of the fully decomposed form in Eq. (3).
So far there is no obvious benefit to this formulation. The critical observation that makes

this partial decomposition useful is that we can computeF without knowing the basis of
left and right eigenvectors used to define it in Eq. (4). Instead, it is simply the complement
of the remaining part of the decomposition, i.e.

F = F(U)− ( f p+1Rp+1
w + f p+2Rp+2

w + · · · + f nRn
w

)
. (6)

Thus, in order to apply a fully upwind scheme to a problem where one characteristic
subspace has a repeated eigenvalue, all that is required are the left and right eigenvectors



             

COMPLEMENTARY PROJECTION 25

corresponding to complementary subspace. In practice, we simply define the cell wall flux
via Eq. (5) and computeFw fromF as calculated in Eq. (6), which requires only the left
and right eigenvectors associated with{λp+1

w , . . . , λn
w}. There is never any need to choose a

basis for—or to characterize in any direct way—the subspace associated with the repeated
eigenvalue.

The basic method of complementary projection is exceedingly simple. In the following
remarks, we elaborate on its properties.

3. REMARKS

Remark1. For a system with ap-fold repeated eigenvalue, the above argument shows
the entire vector fieldF has not only a definite upwind direction, it actually has a well-
defined characteristic speed. Thus, further decomposition into scalar characteristic fields
does not provide any greater insight into the time evolution of the data. Instead, it is simply
an arbitrary decomposition into scalars that have no greater significance than the scalar
components ofF itself.

Thus it seems that if we consider only the quality of the computed solution, there is no
motivation for further decomposition ofF . Our numerical experiments on standard test
problems confirm this—i.e., there is no significant difference between solutions computed
using full or complementary projection.

Moreover, by not decomposingF we can avoid the arbitrary selection of spanning
left and right eigenvectors for the degenerate subspace. This represents a reduction in the
need for tedious analysis, programming, and publishing, and can also noticeably reduce
computational costs.

Based on these factors, we strongly encourage practitioners to use the complementary
projection formulation for systems with a repeated eigenvalue.

Remark2. When applied to a system with a repeated eigenvalue having a large mul-
tiplicity, complementary projection may require fewer operations and therefore result in a
faster code. Let us compare the computational costs of full projection versus complementary
projection in detail.

We will express the cost as a function of the dimension of the undecomposed subspace,
p, and the overall system sizen. We will compare only the cost of the portion of the problem
that is treated differently in each method, i.e. the cost of treating the fields with thep-fold
repeated eigenvalue.

The computational cost of a full decomposition into thep scalar fields ispW1 + pW0,
whereW1 is the average cost of projecting into and out of a field, andW0 is the average cost
of doing a scalar upwind interpolation. The field projections require computingL i

w · F(U)
and f i

wRi
w. These are operations onn-vectors, so the cost is proportional ton, andW1 = αn.

The cost of a scalar interpolation,W0, has no dependence on system sizen or multiplicity
p. Thus the total cost of the standard decomposition has the formαpn+ pW0.

In the complementary projection method, the computational cost isnW2 + nW0, where
W2 is the work per component required to computeF via Eq. (6). This is proportional
to the number of terms which isn − p, andW2 = β(n − p). Thus the overall cost of
complementary projection takes the formβ(n− p)n+ nW0.

In the limit of a large system with a large multiplicity, the cost of the traditional method
scales likepn, while the new method scales like(n − p)n. If we further assume that the
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repeated eigenvalue dominates the system, so thatp dominatesn− p (e.g., in the equations
for multispecies flow,n− p = 2 asp, n→∞), then the complementary projection method
is asymptotically less costly than the traditional approach.

This analysis makes it clear that complementary projection carries out more upwind
interpolations than the traditional approach (alwaysn, instead ofp), but it can save even
more work by avoidingp scalar field projections. However, use of a vectorizing or parallel
computer could potentially alter this conclusion (e.g., by reducing the cost of the vector
inner products used for full projection).

Also note that it is possible to minimizeW1 by making the eigensystemsL andR
collectively as sparse as possible. For example, consider multispecies flown− p = 2, and
thus the complementary projection method scales liken. If the eigensystem was dense, then
the full projection method scales liken2, while the sparse eigensystem chosen in [3] yields
a full projection method which scales liken.

Remark3. Consider this projection technique on a more abstract level. We are able to
project onto the target subspace (and defineF ) without a basis because we know the com-
plementary projection explicitly. That is,F = (I − P)F, whereP is the projection defined
explicitly by the known part of the eigensystem. Since we have all the information needed
to performP, we can perform the complement,I − P, with no additional information.

This algebraic trick can only be used to define a single basis-free projection operator: we
can project onto a subspaceS1 without a basis for it, given a basis for its complement. But
if we need projection operators for two linearly independent subspacesS1 andS2, it is clear
that we must select a basis for at least one of them.

For example, this means that if the eigensystem of a flux functionF(U) has two distinct,
repeated eigenvalues, it is not possible to separately upwind each associated characteristic
subspace without finding a basis foreither one. An eigenbasis must be selected for one of
the subspaces, and then the other can be treated without a basis.

Remark4. In contrast to Remark 3, there is a special situation in which multiple com-
plementary projections can be used efficiently within a single decomposition. If the flux
Jacobian matrix has a block diagonal structure, it is possible to apply complementary pro-
jection separately within each block. In particular, within each major block it is possible to
treat a single repeated eigenvalue without ever constructing an eigenbasis for the associated
characteristic subspace.

To clarify the procedure in this case, letB1 andB2 be the image spaces inRn associated
with two distinct blocks in the diagonal of the Jacobian. Consider subspacesS1 ⊂ B1 and
S2 ⊂ B2. We will show it is possible to define the projections ontoS1 and S2 without
specifying a basis for either one.

Let Pi be the projection onto the complement ofSi in Bi . Construction ofPi requires
knowing only a basis inRn for the complement ofSi in Bi —which does not require choosing
a basis for the other subspace,Sj . Then, projection ontoSi is defined in complementary
fashion asQi − Pi , whereQi is the projection fromRn ontoBi . Note that then× n matrix
Qi is trivial, since it is simply an identity matrix where the corresponding block,Bi , in the
Jacobian is located, and zero elsewhere.

Remark5. Another important situation where this complementary projection can be
of use is the upwind discretization of a weakly hyperbolic system. These systems have
characteristic subspaces that lack a basis of eigenvectors. The simplest example of such a
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system is

ut + aux + vx = 0 (7)

vt + avx = 0, (8)

wherea is a real constant. The Jacobian is an irreducible Jordan block; it has repeated
eigenvaluea, but only a one-dimensional family of eigenvectors spanned by (1, 0). The
traditional upwind technique requires a full eigensystem, and so it does not even apply.
However, this system can be upwinded with componentwisea-upwind differencing and
special techniques for weakly hyperbolic systems which damp out the unwanted linear
growth.

More generally, a subsystem locally equivalent can occur as a block inside a larger
hyperbolic system. The traditional upwind technique requiring a full eigensystem again
does not apply. Still, as long as there is an eigenbasis for the other characteristic fields,
these fields can be upwinded in the standard way and the complement,F , can be solved
componentwise, using special techniques for weakly hyperbolic systems. Note that the
standard alternative is to treat the entire system with the weakly hyperbolic solver and thus
degrade the quality of the solution in the fields which are not weakly hyperbolic. For an
example of a system of practical interest, where this technique can be applied, see [2].

In practice, a complicated hyperbolic system may develop a repeated eigenvalue or be-
come weakly hyperbolic (eigenvectors become dependent)transientlyduring a calculation.
A full characteristic decomposition is appropriate as the primary numerical method, but
some special “back-up” treatment is required when these degenerate cases arise. The method
of complementary characteristic projection provides a convenient “back-up” formula for
the flux in these circumstances.

Remark6. Complementary projection can be used to upwind difference a characteristic
subspace composed of characteristic fields moving withdifferent speeds, as long as they all
have the same upwind direction. I.e., Eqs. (5) and (6) provide a stable upwind differencing
of the system as long asλ1

w, . . . , λ
p
w are all of the same sign.

For an extreme example, one could lump together all the positive speed fields and apply
componentwise upwinding withno decomposition, knowing only a basis for the negative
speed fields (which in contrast would be treated by standard decomposition into scalar
fields). If it so happened that all the fields were positive at some cell wall, upwind differencing
could be applied in a componentwise fashion to compute the cell wall fluxFw, with no
characteristic field projections at all (thep = n case).

However, lumping together fields moving at different speeds into a single undecomposed
subspace is not as attractive as it is for the case of a repeated eigenvalue. The repeated
eigenvalue case is free of any negative consequences, while the more general application
of complementary projection has several deficiencies.

One major deficit is that there is no savings in analytical work—formulas for the entire
eigensystem must be available. To see why, note that since the characteristic speeds are
different they will notalwayshave the same upwind direction. Under the right conditions
they will differ in sign, and the associated fields cannot be lumped into a subspace with
a single upwind direction. Since one must be prepared for this to occur, the characteristic
scalar decomposition must be available as an option for all fields, and so the associated
eigenvectors must be known even if they are seldom used. Still, lumping together different
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fields can give a major savings in computational work, because we only need this information
when eigenvalues change sign.

There is another complication which can make complementary projection undesirable in
this nonrepeated eigenvalue case. If fields moving at different speeds are lumped into a single
subspace, there is the potential for a loss of resolution when two discontinuities propagating
in different fields at different speeds move close together. In each individual characteristic
scalar field there is only an isolated discontinuity; this will be resolved to the extent possible
by the chosen upwind scheme for all time. However, in a vector mixture of two discontinuous
fields, both discontinuities could be present in the same vector component. Since they move
with different speeds, the faster discontinuity could overtake the slower one. No matter
how fine the grid, as the discontinuities pass through each other there will be a temporary
loss of resolution. The resulting errors—which are avoided in the full decomposition—can
seriously corrupt the calculation.

Remark7. In contrast to the loss of resolution difficulties mentioned in Remark 6, such
problems do not arise during calculations in the repeated eigenvalue case. Even if multiple
discontinuities are present in different degenerate fields, because they move at the same
speed, they cannot merge. A high accuracy upwind scheme will maintain resolution as long
as the initial data was resolved by the grid. Further, even when it is possible in principle,
there is no practical way to isolate the discontinuities by projecting them into different
degenerate scalar fields. This is because there is no simple way to determine which of the
infinitely many distinct decompositions will yield the desired separation of features.

Returning to the considerations in Remark 1, note that this reasoning does suggest one
possible accuracy-related motivation for performing a full characteristic decomposition in
the repeated eigenvalue case. Namely, the possibility that one of the nonunique decompo-
sitions might yield a smoother set of scalar fields for scalar upwind differencing than those
provided by the components of the vector data,F . However, there does not seem to be any
practical, general way of determining which of the infinitely many possible decompositions
would yield the smoothest set of scalar fields. In the absence of such knowledge, comple-
mentary projection remains our recommended method for treating systems with repeated
eigenvalues.

4. EXAMPLES

We illustrate this approach by considering a few common hyperbolic systems of equa-
tions. All calculations were carried out using the ENO method described in [4], although
complementary projection can be used with any characteristic upwinding scheme. (The
eigenvalues and eigenvectors are all evaluated at cell walls. In what follows, we will as-
sume that this is given and drop the subscript “w” as a notational change only.)

4.1. 1D Euler Equations

This simple system provides a clear illustration of the operational differences between
full decomposition and complementary projection. The 1D Euler equations are

Ut + [F(U)]x = 0, (9)
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U=
 ρ

ρu
E

 , F(U)=
 ρu
ρu2+ p
(E + p)u

 , (10)

where

E = −p+ ρu2

2
+ ρh, h(T) = h f +

∫ T

0
cp(s) ds. (11)

Heret is time,x is the spatial dimension,ρ is the density,u is the velocity,E is the energy
per unit volume,h is enthalpy per unit mass,h f is the heat of formation or enthalpy at 0 K,
cp is the specific heat at constant pressure, andp is the pressure [3].

We assume pressure is a function (or table lookup) of the density and internal energy per
unit mass,p = p(ρ, e), and denote its corresponding partial derivatives bypρ andpe. The
Jacobian matrix ofF(U) has eigenvalues

λ1 = u− c, λ2 = u, λ3 = u+ c, (12)

and eigenvectors

L1=
(

b2

2
+ u

2c
,
−b1u

2
− 1

2c
,

b1

2

)
, (13)

L2= (1− b2, b1u,−b1), (14)

L3=
(

b2

2
− u

2c
,
−b1u

2
+ 1

2c
,

b1

2

)
, (15)

R1=
 1

u− c
H − uc

 , R2=

 1
u

H − 1
b1

 , R3=
 1

u+ c
H + uc

 , (16)

where

c =
√

pρ + ppe

ρ2
, H = E + p

ρ
, (17)

b1 = pe

ρc2
, b2 = 1+ b1u2− b1H. (18)

Since all the eigenvalues are distinct, the above eigensystem is unique (up to scalar
multiples) and provides a good reference for comparison of full projection and complemen-
tary projection methods. We will use complementary projection to avoid decomposing the
characteristic field moving with the flow velocityu (the second field, oru-field).

The vector flux contributions from the first and third fields are computed in the usual
way, using eigenvector projection. Next we form

F = F(U)− L1F(U)R1− L3F(U)R3. (19)

Note thatF is precisely the unprojected second fieldL2F(U)R2, yet it is obtained without
use ofL2 orR2. We apply componentwise upwinding toF , in theu-upwind direction. Since
F is a three-dimensional vector, three upwind interpolations are required. The resulting
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vector flux is combined with the contributions from the first and third fields to get the total
flux.

In contrast, the standard method would project the three-dimensionalF into the one-
dimensional scalaru-field and apply the upwind interpolation only once. Thus, the com-
plementary projection method is more costly in this case.

In numerical experiments, we have noticed no difference between the complementary
calculations in the case of the 1D Euler equations, except that they run slower (as predicted
since the savings occur as the number of repeated eigenvalues increases). Even in the case of
two shocks intersecting [1]—which causes a transient loss of resolution and is therefore more
sensitive to different schemes—the numerical results agree quite nicely. Neither scheme
seems to have an advantage over the other as far as accuracy or quality of the computed
solutions are concerned.

As a representative example, consider Example 7 in [5] which is the celebrated Woodward
and Colella “bang-bang” problem. Using the CPM, the convection step was 23% slower (as
predicted), although the quality of the solution is the same. In fact the pointwise relative
difference between the two solutions is on the order of 10−12.

4.2. 2D Euler Equations

This is a common system with a repeated eigenvalue. It also illustrates how complemen-
tary projection applies equally well to systems with multiple spatial dimensions.

The 2D Euler equations are

Ut + [F(U)]x + [G(U)]y = 0, (20)

U =


ρ

ρu
ρv

E

 , F(U) =


ρu

ρu2+ p
ρuv

(E + p)u

 , G(U) =


ρv

ρuv
ρv2+ p
(E + p)v

 , (21)

where

E = −p+ ρ(u
2+ v2)

2
+ ρh, h(T) = h f +

∫ T

0
cp(s) ds. (22)

Herey is the second spatial dimension, andv is the velocity in that dimension [3]. As in
the 1D Euler equations,p = p(ρ, e).

The eigenvalues and (one possible set of ) eigenvectors for the Jacobian matrix ofF(U)
are obtained by settingA = 1 andB = 0 in the following formulas, while those for the
Jacobian ofG(U) are obtained withA= 0 andB= 1.

The eigenvalues are

λ1 = û− c, λ2 = λ3 = û, λ4 = û+ c, (23)

and the eigenvectors are

L1 =
(

b2

2
+ û

2c
,−b1u

2
− A

2c
,−b1v

2
− B

2c
,

b1

2

)
, (24)
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L2 =
(

1− b2

2
− v̂

2c
,

b1u

2
− B

2c
,

b1v

2
+ A

2c
,−b1

2

)
, (25)

L3 =
(

1− b2

2
+ v̂

2c
,

b1u

2
+ B

2c
,

b1v

2
− A

2c
,−b1

2

)
, (26)

L4 =
(

b2

2
− û

2c
,−b1u

2
+ A

2c
,−b1v

2
+ B

2c
,

b1

2

)
, (27)

R1 =


1

u− Ac
v − Bc
H − ûc

 , R2 =


1

u− Bc
v + Ac

H − 1
b1
+ v̂c

 , (28)

R3 =


1

u− Bc
v − Ac

H − 1
b1
− v̂c

 , R4 =


1

u+ Ac
v + Bc
H + ûc

 , (29)

where

q2 = u2+ v2, û = Au+ Bv, v̂ = Av − Bu, (30)

c =
√

pρ + ppe

ρ2
, H = E + p

ρ
, (31)

b1 = pe

ρc2
, b2 = 1+ b1q

2− b1H. (32)

Note that the choice of eigenvectors 1 and 4 is unique (up to scalar multiples), but the
choice for eigenvectors 2 and 3 is not unique. Any two independent vectors from the spans
of eigenvectors 2 and 3 could be used instead.

To avoid choosing any basis for this ambiguous subspace, we apply the standard char-
acteristic scalar projections to the first and fourth fields, and then apply complementary
projection for theu-fields:

F = F(U)− L1F(U)R1− L4F(U)R4. (33)

We upwind differenceF componentwise in theu-upwind direction. The result is then com-
bined with the flux contributions from the first and fourth fields. Note that the eigenvectors
for the second and third fields were not needed for the discretization.

Four upwind interpolations are required to compute the contribution from the repeated
eigenvalue for the complementary projection method, instead of only two upwind interpo-
lations if full projection were used. However, we also save two projections.

For a standard dimension by dimension discretization, the complementary projection
method applies independently of the flux for the second spatial dimension. Using the eigen-
vectors appropriate forG(U), we form

G = G(U)− L1G(U)R1− L4G(U)R4 (34)

and upwind differenceG in thev-upwind direction.
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4.3. Multispecies Euler Equations

The multispecies Euler equations provide an important example of a hyperbolic sys-
tem with an eigenvalue repeated many times. Complementary projection becomes quite
attractive for such systems, due to the large analytical and computational savings.

The 2D Euler equations for multispecies flow with a total ofN species are

Ut + [F(U)]x + [G(U)]y = 0, (35)

U =



ρ

ρu
ρv

E
ρY1
...

ρYN−1


, F(U) =



ρu
ρu2+ p
ρuv

(E + p)u
ρuY1
...

ρuYN−1


, G(U) =



ρv

ρuv
ρv2+ p
(E + p)v
ρvY1
...

ρvYN−1,


, (36)

where

E = −p+ ρ(u
2+ v2)

2
+ ρ

(
N∑

i=1

Yi hi

)
, hi (T) = h f

i +
∫ T

0
cp,i (s) ds. (37)

Here,Yi is the mass fraction of speciesi, hi is the enthalpy per unit mass of speciesi, h f
i is

the heat of formation of speciesi , andcp,i is the specific heat at constant pressure of species
i [3]. Note thatYN = 1−∑N−1

i=1 Yi .
The pressure is a function of the density, internal energy per unit mass, and the mass

fractions,p = p(ρ, e,Y1, . . . ,YN−1), and the corresponding partial derivatives are denoted
by pρ, pe, andpYi .

The eigenvalues and (one possible set of) eigenvectors for the Jacobian matrix ofF(U),
are obtained by settingA= 1 and B= 0 in the following formulas, while those for the
Jacobian matrix ofG(U) useA = 0 andB = 1.

The eigenvalues are

λ1 = û− c, (38)

λ2 = · · · = λN+2 = û, (39)

λN+3 = û+ c, (40)

Note the (N + 1)-fold repeated eigenvalue.
A particularly sparse choice of left eigenvectors are given by the rows of the matrix

b2
2 + û

2c + b3
2 − b1u

2 − A
2c − b1v

2 − B
2c

b1
2

−b1z1
2 · · · −b1zN−1

2
1− b2− b3 b1u b1v −b1 b1z1 · · · b1zN−1

v̂ B −A 0 0 · · · 0
−Y1 0 0 0
...

...
...

... I
−YN−1 0 0 0

b2
2 − û

2c + b3
2 − b1u

2 + A
2c − b1v

2 + B
2c

b1
2

−b1z1
2 · · · −b1zN−1

2


, (41)
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and the corresponding sparse choice of right eigenvectors are given by the columns of the
matrix 

1 1 0 0 · · · 0 1
u− Ac u B 0 · · · 0 u+ Ac
v − Bc v −A 0 · · · 0 v + Bc
H − ûc H− 1

b1
−v̂ z1 · · · zN−1 H + ûc

Y1 Y1 0 Y1
...

...
... I

...

YN−1 YN−1 0 YN−1


, (42)

whereI is theN − 1 by N − 1 identity matrix and

q2 = u2+ v2, û = Au+ Bv, v̂ = Av − Bu, (43)

c =
√

pρ + ppe

ρ2
, H = E + p

ρ
, (44)

b1 = pe

ρc2
, b2 = 1+ b1q

2− b1H, (45)

b3 = b1

N−1∑
i=1

Yi zi , zi = −pYi

pe
. (46)

Note that the eigenvectors 2 throughN+2 are not uniquely determined. Each one could be
replaced by an arbitrary linear combination of those shown, as long as linear independence
is maintained. This gives an indication of the enormous range of possible eigensystems that
could be used, although in practice they would yield similar computed solutions. (The costs
may differ, although, depending on sparseness.)

In particular, all the fields in the eigensystem forF(U) have eigenvalueu, except for
the first and last. To avoid choosing any eigenbasis for this degenerate subspace, we ap-
ply the standard projection method to the first and last fields and treat all theu-fields by
complementary projection,

F = F(U)− L1F(U)R1− L N+3F(U)RN+3. (47)

We upwind differenceF in theu-upwind direction. The resulting cell wall flux is combined
with the wall flux contributions from the first and the last fields to yield the net numerical
wall flux.

A total of N + 3 upwind interpolations are required to compute the contribution from
the repeated eigenvalue for the complementary projection method, instead of onlyN + 1
upwind schemes if projection is used. Thus only two extra upwind interpolations are needed
to eliminateN + 1 characteristic projections. Starting at about four species, we expect
the complementary projection method to be less costly. Moreover, there is no need to
ever construct most of the eigensystem shown above. Had this approach been available
for previous work, it would have allowed a major savings in analytic work, as well as
programming and reporting.

For a dimension by dimension discretization, the same considerations apply to the flux
in the other spatial dimension. Using the first and last eigenvectors appropriate forG(U),
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we form

G = G(U)− L1G(U)R1− L N+3G(U)RN+3 (48)

and upwindG in thev-upwind direction.
Numerical experiments were carried out on examples from [3, 1]. For the case of nine

species, the complementary calculations were faster than the traditional approach, even
though the set of eigenvectors for the repeated eigenvalue had been carefully chosen to be
as sparse as possible and the implementation took full advantage of the sparseness. As the
number of species is increased, the percentage savings in CPU time increases as well.

As a particularly difficult example, we compute Example 5.1 from [3] which is a chem-
ically reacting “Sod” shock tube problem. The convection step was 59% faster using the
CPM, with no degradation in the quality of the solution. We show the solution in Fig. 1 and

FIG. 1. Thermally perfect solution (2300 steps).
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FIG. 2. Relative difference (2300 steps).

the relative difference in Fig. 2. The differences are on the order of about 1% and only the
underresolved species (HO2 andH2O2) differ by as much as 2%. The largest differences
occur near large gradients in the solution where the two schemes capture discontinuities
in slightly different ways. These differences are too small to be seen by the naked eye and
have no effect on the size or strength of the discontinuities, only the intermediate points
which span the jumps. In fact, both schemes give the result depicted in Fig. 1.

We note that the standard scheme and the CPM have approximately the same CPU time
when the eigenvalue is repeated four times. That is, for four species (three mass fraction
equations) in one spatial dimension, for three species (two mass fraction equations) in
two spatial dimensions, or for two species (one mass fraction equation) in three spatial
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dimensions. After this point, the CPM is faster with the gains in CPU time proportional to
the number of species.

5. CONCLUSIONS

We have introduced the complementary projection method for use in upwind difference
schemes for systems of hyperbolic conservation laws. This approach provides an alter-
native to full characteristic decomposition of a characteristic subspace, if all associated
characteristic speeds are of the same sign. Instead, projection onto the subspace is defined
as the complement of the projection onto the remaining characteristic spaces. This allows
the application of any upwind method without the need of an eigenbasis for the specified
subspace. All that is required is a complete eigenbasis for the complementary subspace.

This has particular application to problems with a repeated eigenvalue. There the eigens-
pace associated with the repeated eigenvalue does not have a unique eigenbasis. The com-
plementary projection method eliminates the need to construct such a basis, without any
negative side effects, reducing the analytical and programming effort required to apply up-
wind differencing. Our analysis and experiments also show that avoiding the decomposition
can save computational time in practical multispecies compressible flow calculations, with
no significant change in computed results.

We recommend that in the future, practitioners use the complementary projection method
to treat hyperbolic systems with repeated eigenvalues.

This method has other potential applications. The most interesting is formulating upwind
difference schemes for weakly hyperbolic systems. For these systems, a complete eigen-
system does not exist, and thus traditional upwind characteristic schemes do not apply. In
contrast, the complementary projection method provides a simple way to extend upwind
differencing to these systems.
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